Развитие логического мышления на уроках математики

Страница 2

2. Решение задач разными способами. Мало уделяется внимания решению задач разными способами в основном из-за недостатка времени. Но это умение свидетельствует о достаточно высоком математическом развитии. Кроме того, привычка нахождения другого способа решения сыграет большую роль в будущем. Но я считаю, что это доступно не всем ученикам, а лишь тем, кто любит математику, имеет особенные математические способности.

3. Правильно организован способ анализа задачи - по вопросу или от данных к вопросу.

4. Представление ситуации, описанной в задачи (нарисовать "картинку"). Учитель обращает внимание детей на детали, которых нужно обязательно представить, а которые можно опустить. Мнимое участие в этой ситуации. Разбивка текста задачи на значностные части. Моделирование ситуации с помощью чертежа, рисунка.

5. Самостоятельное составление задач учениками.

Составить задачу:

1) используя слова: больше на, столько,, меньше в, на столько больше, на столько меньше;

2) решаемую в 1, 2, 3 действия;

3) по данном ее плане решения, действиям и ответу;

4) по выражению и так далее

6. Решение задач с отсутствующими или лишними данными.

7. Изменение вопроса задачи.

8. Составление разных выражений по данным задачам и объяснение, которое помечает то или другое выражение. Выбрать те выражения, которые являются ответом на вопрос задачи.9. Объяснение готового решения задачи.

10. Использование приема сравнения задач и их решений.

11. Запись двух решений на доске - одного верного и другого неверных.

12. Изменение условия задачи так, чтобы задача взвешивалась другим действием.

13. Закончить решение задачи.

14. Какой вопрос и какое действие лишние в решении задачи (или, напротив, возобновить пропущенный вопрос и действие в задаче).15. Составление аналогичной задачи с измененными данными.

16. Решение обратных задач.

Систематическое использование на уроках математики и внеурочных занятий специальных задач и заданий, направленных на развитие логического мышления, организованных в соответствии с приведенным выше схеме, расширяет математический кругозор младших школьников и позволяет более уверенно ориентироваться в самых простых закономерностях окружающей их действительности и активнее использовать математические знания в повседневной жизни.

"Главная задача учебы математике, причем с самого начала, из первого класса, - учить рассуждать, учить мыслить", - писал педагог-новатор А.А. Столяр. Для достижения наилучших результатов в освоении учениками основ логического мышления и в изучении геометрических фигур А.А. Столяр использовал в своей практике игру с кругами, рассмотрение которой сделано ниже.

Игра с кругами, созданная на основе известных кругов Эйлера, позволяет учить деятельности, которая классифицирует, закладывает понимание логических операций. Перечисленные логические операции имеют важнейшее значение, потому что разные их комбинации образуют всевозможные и как угодно сложные логические структуры. Из функциональных элементов, которые реализуют логические операции, конструируются схемы современных компьютеров.

До конца дошкольного возраста у ребенка оказываются признаки логического мышления. В своих рассуждениях школьник начинает использовать логические операции и на их основе строить умозаключения. Очень важно в этот период научить ребенка логично мыслить и обосновывать свои суждения. Для игры с кругами нужные нарисованы на бумаге один, два или три рядовых круга разного цвета, разноцветные обручи и наборы геометрических фигур разных цветов и размеров, карточки с числами и буквами российского алфавита. В принципе необязательно использовать круги, можно работать с любыми замкнутыми плоскими фигурами. В этом случае замкнутые области выделяются на монтажной панели например, цветными бечевками. Возможна также работа на компьютере со специальной компьютерной программой. Комплексная учеба, что соединит игры с обручами со всем классом, игру за столом в группе и индивидуальной работе за компьютером, является наиболее эффективной.

Важнейшей задачей математического образования является вооружение учеников общими приемами мышления, пространственного воображения, развитие способности понимать содержание поставленной задачи, умения логично рассуждать, усвоить навыки алгоритмического мышления.

Страницы: 1 2 3

Новые статьи:

Психологическая характеристика игры
Слова «игра», «играть» в русском языке чрезвычайно многозначны. Слово «игра» употребляется в значении развлечения, в переносном значении, например «игра с огнем», и в значении чего-то необычного — «игра природы» или случайного — «игра судьбы». Слово «играть» употребляется в значении развлечения, ис ...

Характеристика специфических ошибок письма у младших школьников с задержкой психического развития
Начальный период обучения грамоте младших школьников с задержкой психического развития представляет собой сложное единство, включающее представления об акустическом, артикуляторном, оптическом и кинестетическом образе слова. Исследование И.Н. Садовниковой [39], Р.И. Лалаевой [21], Р.Е. Левиной [25] ...

Влияние лингвострановедческого аспекта на формирование иноязычной культуры обучаемых
Культура в различных ее направлениях содействует формированию личности человека. "Иноязычная культура" – все то, что способен принести учащимся процесс овладения иностранным языком в учебном, познавательном, развивающем и воспитательном аспектах [32, с. 74]. З.Н. Никитенко выделяет элемен ...

Copyright © 2014-2021 - All Rights Reserved - www.probest.site