Построение системы задач, направленных на развитие способностей учащихся в процессе обучения математике

Материалы » Особенности развития одарённых детей в процессе обучения математике в 5-6 классах » Построение системы задач, направленных на развитие способностей учащихся в процессе обучения математике

Страница 4

3.1. На складе хранились яблоки в ящиках по 6 кг, 8 кг и 10 кг. Кладовщик должен отпустить для школы 100 кг яблок целыми ящиками, не вскрывая ни одного из них. По скольку ящиков каждого веса он должен брать, чтобы получилось ровно 100 кг (Рассмотри 10 способов решения этой задачи и запиши их)?

4. Тип задачи: Задачи с меняющимся содержанием

4.1. За 1 час Вася прочитал четверть всех страниц книги. Сколько страниц осталось ему почитать, если в книге 184 страницы? Составь задачу обратную данной.

4.2. Составьте задачу заданного типа, но другого предметного содержания: у каждого из пяти мальчиков было не меньше одного шара, а всего у них было 7 шаров. Мог ли кто-либо из них иметь: а) 3 шара? б) 4 шара?

Синтез

1. Тип задачи: Задачи на соединение

1.1. Предлагается пять равносторонних ромбов с углами по 60º и 120º, расположенных раздельно, в беспорядке. Что получиться в результате (соединения) синтеза этих пяти равносторонних ромбов? (Ответ: в результате соединения (синтеза) этих пяти фигур получится пятиконечная звезда)

2. Тип задачи: Комбинаторные задачи

2.1. Сколько двузначных чисел можно составить из цифр 1, 2, 3, 4, 5? (Ответ: 25 чисел).

2.2. Мальчик собрал в коробку пауков и жуков – всего 8 штук. Если пересчитать, сколько всех ног в коробке, то окажется 54 ноги. Сколько же в коробке пауков и сколько жуков? (У жука 6 ног, у паука 8 ног). Ответ: 5 жуков, 3 паука.

2.3. Расставьте числа 1, 2, 3, 4, 5, 6, 7 и 8 в вершины прямоугольного параллелепипеда так, чтобы сумма четырех чисел, расположенных на каждой из шести граней параллелепипеда, была одинаковой.

3 .Тип задачи: Задачи с несколькими решениями

3.1. Решите анаграммы, дающие два решения, одно из которых – математический термин:

ктеовр, оунск, ртскео.

Сравнение

1. Тип задачи: Задачи на выделение существенного

1.1. Найдите общие признаки у чисел: а) 25 и 52; б) 25 и 35; в) 3333 и 444; г) 7 и 19; д) 8 и 192; е) 3 и 711; ж) 201 и 20101.

1.2. Найдите принцип «устройства» ряда и продолжи этот ряд:

а) 1, 1, 2, 3, 5, . ; б) д, ж, з, к,

1.3. Вставьте пропущенное число:

а) 19/30/11 23/ /27 6)7/91/13 8/ /3 в) 283/81/431 526/ /783.

1.4. Установите, чем с точки зрения математики отличаются и чем похожи слова: кот и ток; рост и сорт; клоун и уклон; приказ и каприз?

2. Тип задачи: Задачи, наталкивающие на самоограничение

2.1. Всем членам семьи сейчас 73 года. Состав семьи: муж, жена, дочь и сын. Муж старше жены на 3 года, дочь старше сына на 2 года. Четыре года тому назад всем членам семьи было 58 лет. Сколько лет теперь каждому члену семьи? (Часто считают, что задача составлена неправильно, т.к. 4 года тому назад всем четырем членам семьи должно было быть на 16 лет меньше, а не на 15. Учащиеся не учитывают того, что это указывает на то, что самого младшего члена семьи 4 года назад еще не было)

Обобщение

1. Тип задачи: Задачи с постепенной трансформацией из конкретного в абстрактный

1.1. Преобразуйте данную задачу из конкретной в абстрактную и решите: АО «Кама» должен был выпустить 100 детских велосипедов и поэтому наметил изготовлять по 4 велосипеда в день. Но рабочие перевыполнили план и изготовляли ежедневно на 1 велосипед больше, чем планировалось. На сколько дней раньше срока завод выполнил заказ?

4. Тип задачи: «Нереальные» задачи (Примечание: термин задач введен В. А. Крутецким.)

4.1. Пароход весь путь от А до Б (по течению) и обратно (против течения) шел с максимальной скоростью. Фактически, ввиду наличия течения, скорость его была различной: от А до Б он шел со скоростью 20 км /час, а обратно со скоростью 30 км/час. Какова его средняя скорость за весь путь?

5. Тип задачи: Образование искусственных понятий

5.1. Длина комнаты а м, ширина и высота по b м. Каков объем п таких комнат?

5.2. Длина комнаты 6 м, ширина 3 м, высота с м. Каков объем Р таких комнат?

6.Тип задачи: Составление задач заданного типа

Страницы: 1 2 3 4 5 6

Новые статьи:

Виды субкультур
Г.С.Абрамова отмечает, что это могут быть возрастные субкультуры (подростковая, юношеская, пожилых людей), профессиональные субкультуры (врачей, юристов, музыкантов, педагогов и т.д.), территориальные (сельские, городские. В том числе наиболее мелкие – дворовая, центровая, хуторская и т.д.), предме ...

Особенности и проблемы использования занимательного материала
Анализируя различные позиции по вопросу занимательности (занимательность — помеха в обучении; занимательность — необходимый элемент, помогающий обучению), опираясь на изучение и обобщение системы учебной работы многих учителей, показываем, что занимательность — важное и в то же время достаточно ост ...

Классификация математических моделей
Взяв за основу классификации, используемые экономикой и психологией, получаем следующие классификации моделей, применяемых в педагогических исследованиях: 1. В соответствии с общей классификацией математических моделей: 1) структурные (неметрические); 2) функциональные (метрические); 3) структурно- ...

Copyright © 2014-2021 - All Rights Reserved - www.probest.site